Smart home, which controls the end use of the power grid, has become a critical component in the smart grid infrastructure. In a smart home system, the advanced metering infrastructure (AMI) is used to connect smart meters with the power system and the communication system of a smart grid. The electricity pricing information is transmitted from the utility to the local community, and then broadcast through wired or wireless networks to each smart meter within AMI. In this work, the vulnerability of the above process is assessed. Two closely related pricing cyberattacks which manipulate the guideline electricity prices received at smart meters are considered and they aim at reducing the expense of the cyberattacker and increasing the peak energy usage in the local community. A countermeasure technique which uses support vector regression and impact difference for detecting anomaly pricing is then proposed. These pricing cyberattacks explore the interdependance between the transmitted electricity pricing in the communication system and the energy load in the power system, which are the first such cyber-attacks in the smart home context.
Reference details
How to cite this reference: